Acknowledgment．This study was supported by NSF Grant CHE－8518801 and in part by the UC Riverside In－ tramural Research Fund．H．E．also acknowledges receipt of a Chancellor＇s Patent Fund grant from the UC Riverside Graduate Division．Badische－Anilin und Soda Fabrik （Ludwigshafen）generously provided several chemicals utilized in this investigation．Dr．R．Lee，Dr．A．de Lera， and Ms．P．Theobald provided valuable advice during the course of this study．

Registry No．（ \pm ）－9a，114582－48－8；（ \pm ）－9b，114582－50－2；（ \pm ）－9c， 114582－52－4；（土）－9d，114582－54－6；11a，114582－55－7；11b， 114582－56－8；12c，114582－57－9；（ \pm ）－13c，114582－58－0；（ \pm ）－13d，

114582－59－1；（ \pm ）－14c，114613－31－9；（ \pm ）－14d，114582－60－4；18，79－ 77－6；（土）－20a，114582－47－7；（土）－20b，114582－49－9；（土）－20c， 114582－51－3；（ \pm ）－20d，114582－53－5；（ \pm ）－23a，114582－61－5；（ \pm ）－23b， 114582－62－6；（土）－24a，94369－97－8；（土）－24b，114582－63－7；（土）－24c， 114594－79－5；25a，114582－64－8；25b，114582－67－1；（土）－26a， 114582－65－9；（土）－26b，114582－66－0；27a，114582－68－2；27b， 114582－70－6；28a，114582－69－3；28b，114582－71－7；HC $\equiv \mathrm{CMe}, 74-$ 99－7； $\mathrm{HC} \equiv \mathrm{CEt}, 107-00-6 ; \mathrm{HC} \equiv \mathrm{CPr}-i, 598-23-2 ; \mathrm{HC} \equiv \mathrm{CBu}-t$ ， 917－92－0．

Supplementary Material Available：Spectral and analytical data（31 pages）．Ordering information is given on any current masthead page．

Rearrangements of 6－Tricyclo［3．3．0．0 ${ }^{2,7}$ ］octyl Cations．Factors Influencing the Relative Stabilities of Bridged Carbocations

T．William Bentley
Department of Chemistry，University College of Swansea，Singleton Park，Swansea， SA2 8PP Wales，United Kingdom
Bernhard Goer and Wolfgang Kirmse＊
Fakultät für Chemie，Ruhr－Universität Bochum，D－4630 Bochum，Federal Republic of Germany

Received December 18， 1987

Abstract

The objective of this work was to explore the effect of ring strain on σ delocalization of carbocations．The 6 －tricyclo［3．3．0．0．2．7］ octyl cation（3）incorporates 2－norbornyl and 2－bicyclo［2．1．1］hexyl structures in a highly strained molecular framework．Solvolyses of the epimeric brosylates 22 and 23 ，as well as nitrous acid deaminations of the analogous amines， 24 and 21，served to generate 3．The exo：endo rate ratios of the brosylates and the exo：endo product ratios of the tricyclo［3．3．0．0 $\left.0^{2,7}\right]$ octan－ 6 －ols $(19,20)$ are close to unity．Product distributions and kinetic data suggest a weak k_{s} contribution at least for the endo brosylate 23．Several nondegenerate rearrangements of 3 were elucidated：Migration of C－2 from C－7 to C－6 $(3 \rightarrow 28)$ is followed，in part，by fragmentation（ $28 \rightarrow$ 31）．A minor fraction of 3 undergoes 4,6 －hydride shifts（ $3 \rightarrow 37 \rightleftharpoons 38$ ）．The degeneracy of 3 was probed with the aid of a $6-{ }^{2} \mathrm{H}$ label．Migration of $\mathrm{C}-8$ from C－7 to $\mathrm{C}-6$ was found to be rapid，as compared to nucleophilic capture，whereas the norbornyl－type Wagner－Meerwein rearrangement（migration of C－4）was not observed．Product and label distributions indicate that the bridged structure（involving C－6，-7 ，and -8 ） 3 c is nearly isoenergetic （ $\pm 0.5 \mathrm{kcal} / \mathrm{mol}$ ）with the unsymmetrical ion 3a while products from the norbornyl－type delocalized ion（ $3 \mathbf{b}$ ）are not observed，so $\mathbf{3 b}$ must be less stable by at least $3 \mathrm{kcal} / \mathrm{mol}$ ．The exceptional order of relative stabilities is explained in terms of＂olefinic strain＂，i．e．，the additional strain resulting from contraction of the basal bond in bridged carbocations．

Many carbocations are known in which the charge is delocalized in two－electron three－center bonds．${ }^{1}$ By Olah＇s terminology these are carbonium ions as opposed to the charge－localized carbenium ions．${ }^{2}$ These terms actually refer to limiting cases；there can be a continuum of electron delocalization in carbocations．${ }^{3}$ Electronic effects on σ delocalization have been thoroughly studied．For instance， the classical $\left(\mathrm{C}_{1}\right)$ structure of the 2－norbornyl cation（1a） was found to be favored by charge－stabilizing substituents

[^0]at $\mathrm{C}-1$ and $\mathrm{C}-2,{ }^{1,4}$ as well as by electron－withdrawing groups at C－6．${ }^{3 \mathrm{a}, 5}$ The influence of ring strain has received much less attention．Recent solvolytic ${ }^{6}$ and computational studies ${ }^{7}$ of the 2－bicyclo［2．1．1］hexyl cation（2）indicate that the delocalized structure $\mathbf{2 b}$ should be about $3 \mathrm{kcal} / \mathrm{mol}$ more stable than 2a（the exchange of the methylene groups of $\mathbf{2 b}$ must proceed via $2 a$ ）．Estimates of the stabilization energy of the 2 －norbornyl cation due to bridging（ $1 \mathbf{b}$ vs 1a） are higher： $6-8 \mathrm{kcal} / \mathrm{mol}$ from exo：endo rate ratios ${ }^{1,4}$ and from heats of ionization；${ }^{8} 10-11 \mathrm{kcal} / \mathrm{mol}$ from gas phase hydride affinities．${ }^{9}$ However，such estimates depend on the choice of appropriate models．${ }^{10}$ Any conclusion from

[^1] 1987，109， 1392.
these data, concerning the effect of ring strain on σ delocalization, would be premature.

10

$1 b$

$3 a$

20

$2 b$

$3 b$

3c

For further insight, we have studied the 6-tricyclo[3.3.0.0 ${ }^{2,7}$]octyl cation (3). This ion incorporates the structural elements of both 1 and 2. Neither the degeneracy of the Wagner-Meerwein rearrangements nor the symmetry of delocalized intermediates ($\mathbf{3 b}, \mathbf{c}$) is disturbed by the additional bridge. On the other hand, the strain energy of tricyclo[3.3.0.0 $0^{2,7}$]octane ($48 \mathrm{kcal} / \mathrm{mol}$) is significantly higher than that of norbornane ($17 \mathrm{kcal} / \mathrm{mol}$) and bicyclo[2.1.1] hexane ($41 \mathrm{kcal} / \mathrm{mol}$). ${ }^{11}$

The only previous report on 6 -tricyclo[3.3.0.0 ${ }^{2,7}$]octyl cations refers to the 1-methyl derivative 8. ${ }^{12}$ Acetolysis of anti-7-methyl-2-norbornene-syn-7-carbinyl brosylate (4) gave a product mixture which contained, in addition to unrearranged (5) and ring-expanded acetates (derived from 6), a set of five tricyclic products (ca. 45%). Independent syntheses identified two of the tricyclic acetates as $10-0 \mathrm{Ac}$ and 11-OAc. The same products, albeit in different ratios, were obtained by acetolysis of the tosylate 7 , derived from $10-\mathrm{OH}$ (Scheme I). The efficient cyclization of 4 is to be contrasted with the behavior of the 7 -unsubstituted analogue 9 , which gave no detectable cyclization products. ${ }^{13}$ The available data did not shed light on the potential degeneracy and stereoselectivity of 8. Extended studies (now reported), particularly of the parent system 3, promised a significant advance.

Results

Preparation of Substrates. Tricyclo[3.3.0.0 $0^{2,7}$]octan6 -one (17), a key intermediate, has been prepared previously by base-induced cyclization of $13 .{ }^{14}$ The route leading to 13 , however, is a rather elaborate, multistep sequence. We obtained 17 (16% yield) by intramolecular photocycloaddition of 14 , which is readily accessible in two steps from 3 -chlorocyclopentene and acrolein. A related approach starts from 2,6-cyclooctadien-1-one (12) and generates 17 in two sequential photoreactions, ${ }^{15}$ but this alternative proved inferior to ours with regard to yield and accessibility of the precursor (Scheme II).

The stereoselectivity of 17 toward lithium aluminum hydride was similar to that of 2-norbornanone: the alcohols 19 and 20, separable by HPLC, were obtained in a 1:9 ratio. The ${ }^{1} \mathrm{H}$ NMR spectra of all tricyclo[3.3.0.0 $0^{2,7}$]octane derivatives contain a sharp doublet of endo $8-\mathrm{H}\left(J_{8 n, 8 \mathrm{x}} \mathrm{ca}\right.$. $8 \mathrm{~Hz})$. In the spectrum of $20\left(\mathrm{CDCl}_{3}\right)$, the doublet is located at $\delta 1.12$, but because of the proximity of the OH

[^2]Scheme I

Scheme II

14

17

22

group, it is shifted downfield to $\delta 1.79$ in the spectrum of 19 , thus confirming the configurational assignment. Moreover, $6-\mathrm{H}$ of 19 absorbs at higher field ($\delta 3.82$) as compared with $6-\mathrm{H}$ of $\mathbf{2 0}$ ($\delta 4.11$), in agreement with exo($\delta 3.75$) and endo-2-norbornanol ($\delta 4.20$).

The alcohols were converted to the analogous brosylates, 22 and 23. Inverting displacement of the endo OBs group with hexadecyltributylphosphonium azide, ${ }^{16}$ followed by LiAlH_{4} reduction, afforded the exo amine 24. The endo isomer 21 was obtained by Pt-catalyzed hydrogenation of the oxime 18. The tosylhydrazone 16 was prepared as another convenient source of diazonium ions (Scheme II).

Product Studies. Solvolyses of the brosylates 22 and 23 were performed in 70% aqueous dioxane in the presence of 2,6 -lutidine. The diazonium ions 25 and 26 were generated by nitrous acid diazotization of the amines 24 and 21 , respectively, and by photolysis of tosylhydrazone 16

[^3]Table I. Product Distributions Obtained from Tricyclo[3.3.0.0 ${ }^{2,7}$]oct-6-yl and Related Substrates ${ }^{a}$

precursor	conditions	products (\%)							
		19	20	29	32	33	35	39	40
22	70% aqueous dioxane, $80^{\circ} \mathrm{C}, 20 \mathrm{~h}$	8.7	15.6	43.1	22.6	3.0	3.0	0.8	3.2
23	70% aqueous dioxane, $80^{\circ} \mathrm{C}, 20 \mathrm{~h}$	35.6	24.2	14.3	9.9	2.0	1.3	2.5	10.2
24	$\mathrm{H}_{2} \mathrm{O} / \mathrm{HClO}_{4}, \mathrm{pH} 3.5, \mathrm{NaNO}_{2}$	12.4	23.1	15.2	35.7	4.2	3.4	1.0	5.0
21	$\mathrm{H}_{2} \mathrm{O} / \mathrm{HClO}_{4}, \mathrm{pH} 3.5, \mathrm{NaNO}_{2}$	32.6	44.2	7.1	9.3	1.0	0.8	0.5	4.5
16	$0.2 \mathrm{~N} \mathrm{NaOH}, h_{\nu}$ (Pyrex)	23.2	33.2	11.0	22.4	2.9	2.2	0.9	4.3
27	$0.2 \mathrm{~N} \mathrm{NaOH}, h \nu$ (Pyrex) ${ }^{b}$	-	-	47.3	41.6	5.3	4.4	-	-
30	$0.2 \mathrm{~N} \mathrm{NaOH}, h \nu$ (Pyrex) ${ }^{c}$	-	-	-	67.8	8.7	12.1	-	-
36	$1 \mathrm{NH}_{2} \mathrm{SO}_{4}, 70 \%$ aqueous dioxane, $60^{\circ} \mathrm{C}, 3$ days	-	-	-	-	-	-	17	83

[^4]
in 0.2 N NaOH . Light-induced elimination of sulfinate from sulfonylhydrazone anions produces diazo compounds, ${ }^{17}$ which are protonated by hydroxylic solvents to give diazonium ions. ${ }^{18}$ Comparison of the product distributions obtained from 16, 21, and 24 (Table I) indicates that a $1: 1$ mixture of exo and endo diazonium ions $(25,26)$ is generated from 16. All tricyclo[3.3.0.0 $0^{2,7}$]oct-6-yl substrates gave mixtures of eight alcohols, which were analyzed by GC and identified by comparison with authentic samples (Table I).

Pathways leading to the products have been formulated in terms of open (classical) carbocations, for the sake of simplicity (Schemes III and IV). The epimeric brosylates (22 and 23) give widely different ratios of the analogous alcohols (19 and 20); in both cases the inverted product predominates. In contrast, the $19: 20$ ratios obtained with the epimeric diazonium ions (25 and 26) are similar, though not identical (0.54 vs 0.74). As endo attack is preferred, these results suggest a significant k_{s} component giving rise to 19 from 23. The excellent leaving group and the enhanced polarity of the medium minimize inverting dis-

[^5]Scheme IV

placement in the dediazoniation process.
A major reaction path is migration of C-2 from C-7 to C-6, with formation of the 3-tricyclo[3.3.0.0 ${ }^{2,6}$]octyl cation (28). The corresponding alcohol 29 and the analogous ketone are readily accessible by oxidation of tricyclo[3.3.0.0 ${ }^{2,6}$]octane. ${ }^{19}$ The behavior of 28 under our reaction conditions was explored by its generation from the tosylhydrazone 27 . In addition to nucleophilic capture $(\rightarrow \mathbf{2 9}$, 47%), fragmentation occurred to give the 2-bicyclo-[3.3.0]oct-6-enyl cation (31) and was followed, in part, by a 1,2 -hydride shift $(31 \rightarrow 34)$. The nucleophilic substitution of cation 31 was highly exo selective ($\rightarrow 32$), while 34 yielded the epimeric alcohols 33 and 35 in comparable amounts (Table I). The fragmentation of 28 was also observed in a previous solvolytic study of $29-\mathrm{OTs},{ }^{19}$ in which no reference to the hydride shift was made. Generation of 31 from the tosylhydrazone 30 , as well as solvolyses of 32 -OTs, ${ }^{20}$ confirms the formation of 32 and products derived from a 1,2 -hydride shift, 33 and 35.

The rearrangement leading to 28 (and subsequently to $29,32,33$, and 35) is favored by the exo configuration of the leaving group $(22,72 \% ; 25,59 \%)$ which allows participation of the (nearly) antiperiplanar C-2-C-7 bond. However, this stereoelectronic effect is not mandatory as substantial amounts of 28 -derived products arise from the corresponding endo precursors (33, $28 \% ; 26,18 \%$). Not only the yield but also the relative amounts of these four products depend on the precursor. For brosylates 22 and 23 , the $29:(32+33+35)$ ratio is higher (22, 1.50; 23, 1.08) than for diazonium ions (25, 0.35; 26, 0.64). Differences between solvolyses of brosylates and dediazoniation may be due to internal return, i.e., to the intervention of 29 OBs, which, in part, gives 29 in a k_{s} process. In accordance

[^6]
with these ideas, kinetic studies showed deviations from first-order kinetics, consistent with formation of a slower reacting compound from 22. The ratio of substitution: fragmentation observed with 27 is 0.92 , intermediate between the figures recorded above. These data indicate that concerted fragmentation ($22,25 \rightarrow 31$) is at best a minor route to bicyclo[3.3.0] octenyl products. The redistribution of a deuterium label also argues against concerted frag. mentation (see below).

The remaining components of the product mixture, 39 and 40 are readily attributed to a 1,3 -hydride shift, converting 3 into 37 . This process is analogous to the familiar 6,2 -shift in 2 -norbornyl cations. ${ }^{1,4}$ While 39 derives directly from 37, Wagner-Meerwein rearrangement to 38, followed by nucleophilic capture, gives the less strained alcohol 40 (strain energy of tricyclo[3.2.1.0 ${ }^{3,6}$]octane: $41 \mathrm{kcal} / \mathrm{mol}^{11}$) (Scheme IV). Acetolysis of 40-OTs has been reported to yield $40-\mathrm{OAc}$ as the only product. ${ }^{21}$ However, on acidolysis of tetracyclo[3.2.1.0 $0^{2,8} .0^{3,6}$]octane ($\left.\mathbf{3 6}\right)^{22}$ in 70% aqueous dioxane, we obtained 39 and 40 in a 1:5 ratio. Although the 39:40 ratios from tricyclo[3.3.0.0 ${ }^{2,7}$]octyl precursors are less precise, due to the small amount of 39 , they agree within experimental error. In view of its rapid equilibration and exo-selective capture, the Wagner-Meerwein pair 37,38 might be replaced by a single, delocalized ion. ${ }^{23}$ Remarkably, protonation of 36 at $\mathrm{C}-1$ does not compete with protonation at $\mathrm{C}-2,8$; no products derived from 3 were detected.
Redistribution of a Deuterium Label. Product studies cannot reveal degenerate rearrangements that might precede the transformations of 3. For further insight, we introduced a deuterium label at C-6 of tricyclo[3.3.0.0 ${ }^{2,7}$]oct-6-yl precursors. Diazonium ions were preferred to brosylates, in order to minimize k_{s} contributions. The simplest approach is photolysis of tosylhydrazone 16 in NaOD , which generates a 1:1 mixture of labeled exo and endo diazonium ions, $\left[6-{ }^{2} \mathrm{H}\right]-25$ and $\left[6-{ }^{2} \mathrm{H}\right]-26$. For comparison, the deuteriated endo amine, $\left[6-{ }^{2} \mathrm{H}\right]-21$, prepared

[^7]Table II. Deuterium Distributions in Products (19, 20, 29, and 32) Obtained from [6- ${ }^{2} \mathrm{H}$]Tricyclo[3.3.0.0 ${ }^{2,7}$]oct-6-yl Substrates (16 and 21)

	precursor	
products	$\mathbf{1 6 , ~ N a O D}, h \nu$	$\left[6-{ }^{2} \mathrm{H}\right]-21, \mathrm{HNO}_{2}$
$\left[66^{2} \mathrm{H}\right]:\left[7-{ }^{2} \mathrm{H}\right]-19$	$52: 48$	$53: 47$
$\left[66^{-} \mathrm{H}\right]:\left[7-{ }^{-} \mathrm{H}\right]-20$	$75: 25$	$51: 49$
$\left[2-{ }^{2} \mathrm{H}\right]:\left[3-{ }^{-2} \mathrm{H}\right]-29$	$80: 20$	$50: 50$
$\left[6-{ }^{2} \mathrm{H}\right]:\left[7-{ }^{2} \mathrm{H}\right]-32$		$50: 50$

by LiAlD_{4} reduction of oxime 18 , was diazotized to give $\left[6-{ }^{2} \mathrm{H}\right]-26$. The major products, $19,20,29$, and 32 were isolated by HPLC and analyzed by NMR. A crucial point is the assignment of the bridgehead protons $5-\mathrm{H}$ and $7-\mathrm{H}$ of 19 and 20 , respectively. A discriminating feature, coupling of $7-\mathrm{H}$ with exo $8-\mathrm{H}$, is obscured by overlap of the exo $8-\mathrm{H}$ signals with those of other protons. For an unequivocal assignment, we prepared $\left[7-{ }^{2} \mathrm{H}\right]-19$ and $\left[7-{ }^{2} \mathrm{H}\right]-20$ by an adaption of Scheme II, using [$2-^{2} \mathrm{H}$]propenal. ${ }^{24}{ }^{2} \mathrm{H}$ NMR quantitated the deuterium distribution of 19,20 , and 29, but was not applicable to 32, due to overlapping signals of the olefinic protons. In this case, we made use of the isotope effect exerted by deuterium on the ${ }^{13} \mathrm{C}$ chemical shift of $\mathrm{C}-5$ in $\left[6-{ }^{2} \mathrm{H}\right]-32$ and of $\mathrm{C}-8$ in $\left[7-{ }^{2} \mathrm{H}\right]-32$. For example, the mixture of isotopomers of 32 , obtained from 16, displayed original and shifted signals of $5-{ }^{13} \mathrm{C}$ in a $20: 80$ ratio ($\pm 5 \%$) while the analogous ratio for $8-{ }^{13} \mathrm{C}$ was $80: 20$.

We observed that deuterium was distributed about equally between positions 6 and 7 of 19 and 20 (Table II). This remarkable result requires rapid equilibration of the classical ions $\left[6-{ }^{2} \mathrm{H}\right]-3 \mathrm{a}$ and $\left[7-{ }^{2} \mathrm{H}\right]-3 \mathrm{a}$. We cannot exclude the endo-selective bridged ion $\left[6-{ }^{2} \mathrm{H}\right]-3 \mathrm{c}$ as a third component of the equilibrium, but we can establish a lower limit of its relative energy. If the endo alcohol 20 were to arise exclusively from $3 \mathbf{c}$, the bridged ion $3 \mathbf{c}$ would be $0.2-0.3 \mathrm{kcal} / \mathrm{mol}$ more stable than $3 \mathrm{a}(20: 19=1.4)$. Alternatively, if 3 c were the transition state of the degenerate rearrangement of $3 \mathbf{a}, \mathbf{3 c}$ should be less stable than 3 a by $0.5 \mathrm{kcal} / \mathrm{mol}$; otherwise nucleophilic capture of $\left[6-{ }^{2} \mathrm{H}\right]-3 \mathrm{a}$ (diffusion controlled, apparent $\Delta G^{*} \mathrm{ca} .1 .7 \mathrm{kcal} / \mathrm{mol}$) would produce a significant excess of $\left[6-{ }^{2} \mathrm{H}\right]-19$ over $\left[7-{ }^{2} \mathrm{H}\right]-19$. We conclude from these two alternative estimates that $3 \mathbf{c}$ must be nearly isoenergetic with 3 a to account for the

[^8]Table III. Rate Constants (k) for Solvolyses of p-Bromobenzenesulfonates in $80 \%(\mathrm{v} / \mathrm{v})$ Ethanol/Water ${ }^{a}$

substrate ${ }^{b}$	$T,{ }^{\circ} \mathrm{C}$	$k, \mathrm{~s}^{-1}$	ΔH^{*}, $\mathrm{kcal} / \mathrm{mol}$	$\Delta S^{*} \mathrm{eu}$
$\mathbf{2 2}$ (exo)	50.0	$(4.65 \pm 0.02) \times 10^{-4}$		
	25.0	$(2.02 \pm 0.02) \times 10^{-5}$	23.4	-1.5
$\mathbf{2 3}$ (endo)	50.0	$(5.7 \pm 0.1) \times 10^{-4}$		
	25.0	$(2.59 \pm 0.03) \times 10^{-5}$	23.1	-2.2
$\mathbf{4 1}$	75.0	$(6.11 \pm 0.04) \times 10^{-4}$		
	50.0	$(4.12 \pm 0.14) \times 10^{-5}$	23.5	-6.2
	25.0^{c}	1.8×10^{-6}		
$\mathbf{4 2}$ (exo)	25.0^{d}	$(1.41 \pm 0.02) \times 10^{-3}$	$(20.0)^{e}$	$(-7.9)^{e}$
$\mathbf{4 3}$ (endo)	$25.0^{\text {c.f }}$	1.6×10^{-6}		

${ }^{a}$ Determined conductimetrically in duplicate except where noted otherwise; errors shown are average deviations. ${ }^{\text {b }}$ Structural formulas shown in Schemes III and VI. ${ }^{\text {c Calculated from data at }}$ other temperatures. ${ }^{d}$ Average of 28 spectrophotometric determinations; personal communication from Prof. B. L. Murr. See also ref 25 . ${ }^{e}$ For the tosylate (ref 26). ${ }^{i}$ Extrapolated from data in 70% ethanol/water (ref 26) using the $m Y_{\text {OTs }}$ equation with $m=0.69$ (ref 27).

distribution of products and labels. In contrast, the nor-bornyl-type bridged ion 3b appears to be inaccessible from 3a since no deuterium is found at C-5 of 19 (Scheme V).

With 16 as the starting material, deuterium is distributed in a $3: 1$ ratio between positions 2 and 3 of 29 (Table II). This result is most reasonably interpreted in terms of concerted dediazoniation and rearrangement of the exo diazonium ion 25 to give the 3-tricyclo[3.3.0.0 $0^{2,6}$]octyl cation (28). The concerted route is not available to the endo diazonium ion 26. Consequently, nitrous acid deamination of the endo amine [$\left.6-{ }^{-} \mathrm{H}\right]-21$ leads to a 1:1 ratio of $\left[2-{ }^{2} \mathrm{H}\right]-29$ and $\left[3-{ }^{2} \mathrm{H}\right]-29$. The deuterium distribution in 32 is similar to that in 29, suggesting that concerted fragmentation of $25(\rightarrow 31)$ plays a minor role.

Kinetic Studies. Rate constants for solvolyses in 80% (v / v) ethanol/water are shown in Table III for the exo and endo brosylates (22,23) and, for comparison, the 2-bicyclo[2.1.1] hexyl (41) and 2-norbornyl brosylates (42, 43) (Scheme VI). The exo:endo (22:23) rate ratio is 0.78 at $25^{\circ} \mathrm{C}$, much lower than the corresponding ratio of 880 for 2 -norbornyl (42:43). Similar relative rates (1.05 and 1000 respectively) are shown in Table IV for solvolyses in 97% (w/w) trifluoroethanol/water (97T), a solvent of higher ionizing power and lower nucleophilicity than 80% ethanol/water. ${ }^{31}$ The endo brosylate (23) solvolyzes in 97T, 64 times faster than 41 and 37 times faster than 43, at least partly because of the inductive/hyperconjugative effects of the extra carbon atom(s). ${ }^{32}$ Solvent effects (Table IV), shown as rate ratios in $97 \mathrm{~T} / 80 \%$ ethanol, for 22 and 23 are very similar to those for solvolyses of 2-adamantyl and

[^9]Table IV. Solvolysis Rate Constants in 97% (w/w) Trifluoroethanol/Water (97T) at $25^{\circ} \mathrm{C}$ and Solvent Effects on the Reactivity of Secondary Alkyl \boldsymbol{p}-Bromobenzenesulfonates

substrate		$k_{97 \mathrm{~T}}, \mathrm{~s}^{-1}$	$k_{97 \mathrm{~T}} / k_{80 \mathrm{E}^{a}}$	m^{b}
$\mathbf{2 2}$ (exo)	$Q^{\prime b}$			
$\mathbf{2 3}$ (endo)	$(5.39 \pm 0.04) \times 10^{-4}$	27		
$\mathbf{4 1}$	$(5.13 \pm 0.16) \times 10^{-4}$	20		
$\mathbf{4 2}$ (exo)	$(8.0 \pm 0.2) \times 10^{-6}$	4.4		
$\mathbf{4 3}$ (endo)	1.4×10^{-2}	10^{c}	0.82	0.74
pinacolyl	1.4×10^{-5}	9^{d}	0.69	0.60
1-adamantylmethyl-		13^{e}	0.82	0.76
\quad carbinyl		58^{\prime}	1.05	1.07
2-adamantyl				
2-propyl		$41^{c, g}, h$	1.0^{i}	1.0^{i}
		0.14^{e}	0.33	0.0^{i}

${ }^{a}$ Rate ratio in 97% (w/w) trifluoroethanol/water: 80% (v / v) ethanol/water; kinetic data for 80% ethanol from Table III. ${ }^{b}$ For tosylates (see Table VII of ref 27). ${ }^{c}$ Rate constant for 97 T obtained by assuming a brosylate:tosylate rate ratio of 3 in 97% trifluoroethanol (ref 26). ${ }^{d}$ Rate constant for 97 T extrapolated from data in 85% trifluoroethanol (ref 26) using the $m Y_{\text {OTs }}$ equation with $m=0.69$ (ref 27); the effect of added water is small (see also ref 28 and 29). ${ }^{e}$ Data from ref 28. 'Data from ref 29. ${ }^{g}$ Assuming a brosylate:tosylate rate ratio of 5 in 80% ethanol/water (based on data from various sources, e.g., ref 30). ${ }^{h}$ Data from ref $31 .{ }^{i}$ By definition.

1-adamantylmethylcarbinyl sulfonates, and these data alone do not permit a distinction to be made between weak k_{s} and weak k_{Δ} mechanisms. ${ }^{27}$

Considering also the product data, it is suggested that solvolyses of $\mathbf{2 3}$ may proceed via equilibrating classical and weakly bridged cations (3 a and 3 c) and by a weak k_{s} process with inversion of configuration. The results well illustrate the close approach to limiting $\left(k_{\mathrm{c}}\right)$ behavior as nucleophilic solvent assistance (k_{B} solvolysis) and anchimeric assistance (k_{Δ} solvolysis) are reduced. A direct route from exo substrates $(22,25)$ to $28(\rightarrow 29)$, and hence the possibility of a weak k_{Δ} pathway for solvolysis of 22 , is indicated by the incomplete equilibration of the deuterium label in 29, produced from the photolysis of 16 (Table II). The results for 41 (Table IV) show a lower response to changes in solvent ionizing power, consistent with the more strongly assisted k_{s} and k_{Δ} processes discussed previously. ${ }^{6}$

Discussion

Degenerate and nondegenerate rearrangements of 6tricyclo[3.3.0.0 ${ }^{2,7}$]octyl cations both involve the cyclobutane ring. The exo products derive from the rapidly equilibrating unsymmetrical ion 3a. The σ-delocalized structure $3 c$, a likely contributor to the formation of endo products, was shown to be nearly isoenergetic ($\pm 0.5 \mathrm{kcal} / \mathrm{mol}$) with 3a. Hence, formation of 3c can make at most only a small contribution to the greater reactivity of 23 compared with 43. Both rate and product data are consistent with the absence of norbornyl-type Wagner-Meerwein rearrangement; i.e., the bridged ion $\mathbf{3 b}$ must be $\geq 3 \mathrm{kcal} / \mathrm{mol}$ higher in energy than 3a. At the MINDO/3 level of calculation, the energy of 3 b lies about $11 \mathrm{kcal} / \mathrm{mol}$ above 3 c . ${ }^{33}$ The reduced extent of σ-bond delocalization, as compared to the parent systems ($\mathbf{1 a} \rightarrow \mathbf{1 b},{ }^{1} \mathbf{2 a} \rightarrow \mathbf{2} \mathbf{b}^{6}$), will be considered in terms of ring strain.
The tetracycloalkanes 36 and 44 were chosen initially as models for the cations $3 \mathbf{b}$ and $3 \mathbf{c}$, respectively, although by incorporating a cyclopropane ring these models greatly exaggerate the strength of the partial bonding in the cations. According to MM2 force field calculations, ${ }^{34}$ the

[^10]
strain energy (SE) of 44 exceeds that of 36 by about 8 $\mathrm{kcal} / \mathrm{mol}$, i.e., the opposite order of stability from that deduced for the corresponding cations. In search for experimental support, we pyrolyzed the sodium salt 45 of tosylhydrazone 16. C-H insertion of the carbene 46 afforded 36^{22} while 44^{35} was not detected (Scheme VII). These results support the MM2 predictions for 36 and 44; hence "cyclopropane strain" does not model adequately the relative stabilities of $\mathbf{3 b}$ and 3 c . In retrospect this is not surprising since computed structures of $\mathbf{1 b}{ }^{36}$ and $\mathbf{2 b}^{7}$ display short basal (C-1-C-2) bonds (about $1.38 \AA$) and long distal (C-6-C-1,2) bonds (about $1.88 \AA$). Therefore, we should focus on the increase in strain associated with contraction of the basal (C-1-C-2) bond ("olefinic strain"), as shown in the π-complex alternative representation of bridged ions, emphasized by Dewar; ${ }^{37}$ both alt-1b and alt-2b (Scheme VII) contain a cyclopentene ring while the $\mathrm{C}=\mathrm{C}$ bonds of alt-3b and alt-3c are part of bicyclo[2.1.1] hexene (48) and norbornene (49), respectively. The heats of hydrogenation ${ }^{38,39}$ indicate an extra strain energy of ca. $7 \mathrm{kcal} / \mathrm{mol}$ for norbornene (49) and of ca. $15 \mathrm{kcal} /$ mol for bicyclo[2.1.1]hexene (48). Thus "olefinic strain" provides a rationale for the behavior of 6-tricyclo[3.3.0.0 ${ }^{2,7}$]octyl cations and appears to be a major factor in determining the relative stabilities of bridged ions. ${ }^{40}$

Experimental Section

General Methods. Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker WP-80 and AM-400 instruments in CDCl_{3} solution, with tetramethylsilane as an internal reference. ${ }^{2} \mathrm{H}$ NMR spectra were determined in CCl_{4} solution on the Bruker AM-400 spectrometer (61.42 MHz). Analytical GC separations

(35) Stapersma, J.; Rood, I. D. C.; Klumpp, G. W. Tetrahedron 1982,

 38, 191.(36) (a) Yoshimine, M.; McLean, A. D.; Liu, B.; De Frees, D. J.; Binkley, J. S. J. Am. Chem. Soc. 1983, 105, 6185. (b) Goddard, J. D.; Osamura, Y.; Schaefer. H. F., III J. Am. Chem. Soc. 1982, 104, 3258. (c) Raghavachari, K.; Haddon, R. C.; Schleyer, P. v. R.; Schaefer, H. F., III J. Am. Chem. Soc. 1983, 105, 5915.
(37) Dewar, M. J. S.; Reynolds, C. H. J. Am. Chem. Soc. 1984, 106, 1744 and references cited.
(38) Jensen, J. L. Prog. Phys. Org. Chem. 1976, 12, 189.
(39) Roth, W. R., unpublished results.
(40) The π-complex representation of the 4 -tricyclo[3.3.0. $0^{2,7}$]octyl cation (37) includes a cyclopentene ring, so it will have less olefinic strain and the Wagner-Meerwein shift ($\rightarrow \mathbf{3 8}$) is then observed (Scheme IV).
were carried out on a Siemens Sichromat equipped with glass capillary columns. Varian Aerograph 920 instruments, equipped with packed glass columns, were used for preparative gas chromatography (PGC). High-pressure liquid chromatography (HPLC) was performed on a LDC instrument with $25 \times 1.5 \mathrm{~cm}$ silica gel columns ($\mathrm{Si} 60,5 \mu \mathrm{~m}$, Macherey and Nagel).

Tricyclo[3.3.0.0 ${ }^{2,7}$]octan-6-one (17). A mixture of magnesium turnings ($36 \mathrm{~g}, 1.6 \mathrm{~mol}$) and THF (250 mL) was "activated" by dropwise addition of methyl iodide (0.5 mL). A solution of 3chlorocyclopentene ${ }^{41}(82 \mathrm{~g}, 0.8 \mathrm{~mol})$ in THF $(300 \mathrm{~mL})$ was added over 6 h with stirring at $-10^{\circ} \mathrm{C}$. The mixture was stirred at -10 ${ }^{\circ} \mathrm{C}$ for 1 h , and then a solution of acrolein ($33.6 \mathrm{~g}, 0.6 \mathrm{~mol}$) in THF $(40 \mathrm{~mL})$ was added slowly at $-5^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to room temperature. After being stirred for 1 h , the mixture was poured into ice (100 g) and decanted from excess magnesium. The precipitate was dissolved with $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$, and the organic layer was separated. The aqueous layer was extracted with ether ($4 \times 100 \mathrm{~mL}$), and the combined organic extracts were washed with saturated NaHCO_{3} solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was distilled to give 54.5 $\mathrm{g}(73 \%)$ of 1-cyclopent-2-en-1-ylprop-2-en-1-ol: bp $75-76^{\circ} \mathrm{C}$ (15 $\mathrm{mmHg}) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.55-2.5(\mathrm{~m}, 5 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 1$ H), $5.0-5.4(\mathrm{~m}, 2 \mathrm{H}), 5.5-6.1(\mathrm{~m}, 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$: C, 77.38; H, 9.74. Found: C, $77.34 ; \mathrm{H}, 9.56$. GC indicated a $57: 43$ mixture of diastereomers.
To a solution of 1-cyclopent-2-en-1-ylprop-2-en-1-ol ($42 \mathrm{~g}, 0.34$ mol) in acetone (1 L) was added dropwise at $0-5^{\circ} \mathrm{C}$ Jones reagent ${ }^{42}$ $(125 \mathrm{~mL})$ until a red coloration persisted. After $\mathrm{NaHSO}_{3}(3 \mathrm{~g})$ and excess NaHCO_{3} were added, the precipitate was separated and extracted with pentane. On addition of the pentane extracts to the aqueous acetone solution, two layers formed. The aqueous layer was extracted with pentane ($3 \times 100 \mathrm{~mL}$), and the combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. GC indicated 87.5% of 1-cyclopent-2-en-1-ylprop-2-en-1-one (14) and two more volatile, unidentified byproducts. A small sample of 14 was isolated by PGC (1.5 m , Carbowax, $90^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR δ $1.9-2.5(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 5.56-6.7(\mathrm{~m}, 5 \mathrm{H})$.
The crude pentane solution of 14 (also containing some acetone) was irradiated for 24 h with a medium-pressure mercury arc (150 W). The conversion of 14 was monitored by GC. The mixture was concentrated to 150 mL under reduced pressure (300 mmHg). The remaining solvent was removed by fractional distillation ($18-\mathrm{cm}$ Vigreux column), and the residue was purified by bulb-to-bulb distillation in vacuo (0.1 mmHg). The crude product (10.3 g , containing 63% of $\mathbf{1 7}$; yield 16%) was used in the preparation of alcohols, amines, etc. Pure samples were obtained by PGC (1.5 m , Carbowax, $100^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR $\delta 1.42$ (dt, endo $3-\mathrm{H}, J_{3 \mathrm{n}, 3 \mathrm{x}}=$ $13.5 \mathrm{~Hz}, J_{3 \mathrm{n}, 4 \mathrm{n}} \simeq J_{3 \mathrm{n}, 4 \mathrm{x}}=8.0 \mathrm{~Hz}$), $1.60(\mathrm{~m}$, exo $3-\mathrm{H}$), 1.68 (d, endo $\left.8-\mathrm{H}, J_{8 \mathrm{n}, 8 \mathrm{~s}}=8.0 \mathrm{~Hz}\right), 2.0(\mathrm{~m}, 4-\mathrm{H}), 2.20\left(\mathrm{dt}\right.$, exo $8-\mathrm{H}, J_{8 \mathrm{n}, 8 \mathrm{x}}=8.0$ $\mathrm{Hz}, J_{1,8 \mathrm{x}} \simeq J_{7,8 \mathrm{x}}=3.0 \mathrm{~Hz}$), $2.53(\mathrm{br} \mathrm{s}, 5-\mathrm{H}), 2.71(\mathrm{~m}, 1 . \mathrm{H}), 2.80$ (dt, $J_{1,7}=7.0 \mathrm{~Hz}, J_{7,8 \mathrm{x}} \simeq J_{2.7}=3.0 \mathrm{~Hz}$), $2.87(\mathrm{~m}, 2-\mathrm{H})$. The assignments were confirmed by H/H COSY.

Tricyclo[3.3.0.0 ${ }^{2,7}$]octan-6-one Tosylhydrazone (16). Ketone $17(520 \mathrm{mg}, 4.26 \mathrm{mmol}$) was added to a hot, saturated solution of tosylhydrazine ($880 \mathrm{mg}, 4.73 \mathrm{mmol}$) in methanol. Three drops of a saturated solutions of hydrogen chloride in methanol were added, and the mixture was heated at reflux for 2 h . After cooling slowly to room temperature, the mixture was left overnight in the refrigerator. The crystals of 16 were filtered with suction and recrystallized from ethanol to give $877 \mathrm{mg}(71 \%$) of $16: \mathrm{mp}$ $123-124{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.3-2.15(\mathrm{~m}, 7 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.75$ $(\mathrm{m}, 2 \mathrm{H}), 2.8-3.0(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.04 ; \mathrm{H}, 6.25 ; \mathrm{N}$, 9.65. Found: C, $61.80 ; \mathrm{H}, 6.75$; N, 10.26 .

Tricyclo[3.3.0.0 ${ }^{2,7}$]octan-6-ols 19 and 20. To a suspension of $\mathrm{LiAlH}_{4}(650 \mathrm{mg}, 17 \mathrm{mmol})$ in ether (50 mL) was added ketone $17(2.0 \mathrm{~g}, 16.5 \mathrm{mmol})$ in ether $(30 \mathrm{~mL})$. The mixture was stirred at reflux for 1 h . After cooling of the mixture to room temperature, water was added dropwise until a flaky hydroxide precipitate had formed. The solution was filtered, and the precipitate was washed several times with ether. The combined ethereal solutions were

[^11]washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to $2-3 \mathrm{~mL}$ by distillation through a Vigreux column. GC of the residue indicated a 10:90 ratio of 19 and 20. The isomers were separated by HPLC (pentane/ether, 70:30) and purified by sublimation (60 ${ }^{\circ} \mathrm{C}, 15 \mathrm{mmHg}$.

Tricyclo[3.3.0.0 $0^{2,7}$]octan-exo-6-ol (19): $0.15 \mathrm{~g}(7.3 \%)$; mp 102 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.25$ (dt, endo $3-\mathrm{H}, J_{3 \mathrm{n}, 3 \mathrm{x}}=13 \mathrm{~Hz}, J_{3 \mathrm{n}, 4 \mathrm{n}}=J_{3 \mathrm{n}, 4 \mathrm{x}}$ $=8 \mathrm{~Hz}$), 1.32 (dddd, exo $3-\mathrm{H}, J_{3 \mathrm{n}, 3 \mathrm{x}}=13 \mathrm{~Hz}, J_{3 \mathrm{x}, 4 \mathrm{x}}=10 \mathrm{~Hz}, J_{3 \mathrm{x}, 4 \mathrm{n}}$ $=8 \mathrm{~Hz}, J_{2,3 \mathrm{x}}=2.5 \mathrm{~Hz}$), $1.52(\mathrm{br} \mathrm{s}, \mathrm{OH}), 1.62$ (dddd, exo $4-\mathrm{H}, J_{4 \mathrm{n}, 4 \mathrm{x}}$ $\left.=12.5 \mathrm{~Hz}, J_{3 \mathrm{x}, 4 \mathrm{x}}=10 \mathrm{~Hz}, J_{3 \mathrm{n}, 4 \mathrm{x}}=8 \mathrm{~Hz}, J_{4 \mathrm{x}, 5}=3 \mathrm{~Hz}\right), 1.77(\mathrm{~m}$, exo $8-\mathrm{H}$), 1.79 (d, endo $8-\mathrm{H}, J_{8 n, 8 \mathrm{x}}=7.5 \mathrm{~Hz}$), 1.83 (ddm, endo $4-\mathrm{H}$, $\left.J_{4 \mathrm{n}, 4 \mathrm{x}}=12.5 \mathrm{~Hz}, J_{3 \mathrm{x}, 4 \mathrm{n}}=8 \mathrm{~Hz}\right), 1.99(\mathrm{br} \mathrm{s}, 5-\mathrm{H}), 2.28(\mathrm{~m}, 1-\mathrm{H})$, $2.35(\mathrm{~m}, 2-\mathrm{H}), 2.48(\mathrm{~m}, 7-\mathrm{H}), 3.82\left(\mathrm{~d}, 6-\mathrm{H}, J_{6,7}=2.8 \mathrm{~Hz}\right)$. The assignments were confirmed by H / H COSY and by the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[7 .{ }^{2} \mathrm{H}\right]-19$, which showed strongly reduced signal intensity at $\delta 2.48$ and a singlet at $\delta 3.82(6-\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 77.38 ; \mathrm{H}, 9.74$. Found: C, 77.03; H, 9.65.

Tricyclo[3.3.0.0 $0^{2,7}$] octan-endo-6-ol (20): $1.1 \mathrm{~g}(53.6 \%)$; mp 107 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.12$ (d, endo $8-\mathrm{H}, J_{8 \mathrm{n}, 8 \mathrm{x}}=7.5 \mathrm{~Hz}$), $1.35-1.6(\mathrm{~m}$, $5 \mathrm{H}), 2.03(\mathrm{~m}$, endo $4-\mathrm{H}), 2.30\left(\mathrm{dt}, 7-\mathrm{H}, J_{1,7}=7 \mathrm{~Hz}, J_{2,7}=J_{7,8 \mathrm{x}}\right.$ $=3 \mathrm{~Hz}$), $2.34(\mathrm{~m}, 2-\mathrm{H}), 2.38-2.43(\mathrm{~m}, 1-\mathrm{H}, 5-\mathrm{H}), 4.11\left(\mathrm{~d}, J_{5,6}=\right.$ 6.2 Hz). The partial assignment was confirmed by H / H COSY and by the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[7-{ }^{2} \mathrm{H}\right]-20$, which showed strongly reduced signal intensity (25%) at $\delta 2.30$ and two doublets ($\Delta \delta=$ 2 Hz , ratio 25:75) at δ 1.12. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 77.38$; H, 9.74. Found: C, 77.29; H, 9.82.

Tricyclo [3.3.0.0 ${ }^{2,7}$]oct- 6 -yl p-Bromobenzenesulfonates 22 and 23. To a solution of $19(0.12 \mathrm{~g}, 1.0 \mathrm{mmol})$ in anhydrous pyridine (2.5 mL) was added at $0{ }^{\circ} \mathrm{C} p$-bromobenzenesulfonyl chloride ($0.31 \mathrm{~g}, 1.2 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , kept in the refrigerator for 2 days, poured into ice/water (10 $\mathrm{mL})$, and extracted with ether ($4 \times 10 \mathrm{~mL}$). The extracts were washed with dilute sulfuric acid, aqueous NaHCO_{3}, and water. Drying (MgSO_{4}) and evaporating the ether solution afforded 22 ($203 \mathrm{mg}, 58 \%$) as a solid, which was recrystallized from ether/ pentane: $\mathrm{mp} 82-83^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.2-1.9(\mathrm{~m}, 6 \mathrm{H}), 2.2-2.7$ (m, $4 \mathrm{H}), 4.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 4 \mathrm{H})$.
Analogously, alcohol $20(0.50 \mathrm{~g}, 4.03 \mathrm{mmol})$ and p-bromobenzenesulfonyl chloride ($1.24 \mathrm{~g}, 4.86 \mathrm{mmol}$) in pyridine (6 mL) afforded the endo brosylate $23(1.21 \mathrm{~g}, 88 \%)$: mp $85-87^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.3-1.9(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H})$, $2.3-2.7(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 4 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{~S}$: $\mathrm{C}, 48.99 ; \mathrm{H}, 4.40$. Found for 22: $\mathrm{C}, 49.10$; H, 4.54. Found for 23: C, 49.04; H, 4.54.

Tricyclo[3.3.0.0 ${ }^{2,7}$]octan-endo-6-amine (21). The ketone 17 $(1.3 \mathrm{~g}, 10.7 \mathrm{mmol})$, hydroxylamine hydrochloride $(1.12 \mathrm{~g}, 16.1$ mmol), ethanol (12 mL), and pyridine ($1.11 \mathrm{~g}, 14.1 \mathrm{mmol}$) were heated at reflux for 3 h . After evaporation of the solvents in vacuo, the residue was extracted with ether. The extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The solid was recrystallized from pentane to yield $0.90 \mathrm{~g}(55 \%)$ of oxime 18: mp $83-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.15-2.35(\mathrm{~m}, 6 \mathrm{H}), 2.4-2.8(\mathrm{~m}, 2 \mathrm{H}), 3.29$ (br s, 0.73 H), 3.65 (br s, 0.27 H) (syn/anti isomers), 7.8 (br s, 1 $\mathrm{H})$.

To a solution of oxime $18(0.69 \mathrm{~g}, 4.5 \mathrm{mmol})$ in anhydrous acetic acid (70 mL) was added Adams' catalyst ($\mathrm{PtO}_{2}, 100 \mathrm{mg}$). The mixture was hydrogenated at atmospheric pressure and room temperature. After filtration, concentrated hydrochloric acid (15 mL) was added. The mixture was evaporated to dryness, and the residue was dissolved in water (80 mL). The aqueous solution was washed with ether, made alkaline (NaOH), and extracted with ether. The extracts were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated by distillation (normal pressure, Vigreux column). GC indicated 21 and 24 in a $98: 2$ ratio. Anhydrous hydrogen chloride was passed into the solution. The precipitate was filtered with suction and recrystallized from ethyl acetate/methanol to give $21 \cdot \mathrm{HCl}(552$ $\mathrm{mg}, 77 \%$): mp $195^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1$ H), 1.3-1.9 (m, 5 H), $2.35-2.7(\mathrm{~m}, 4 \mathrm{H}), 3.48$ (br d, $J=6 \mathrm{~Hz}, 1$ H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{ClN}$: C, 60.16; $\mathrm{H}, 8.84 ; \mathrm{N}, 8.78$. Found: C, 60.13; H, 8.82; N, 8.84 .
Tricyclo[3.3.0.0 ${ }^{27}$] octan-exo-6-amine (24). Brosylate 23 (0.35 $\mathrm{g}, 1 \mathrm{mmol}$), tributylhexadecylphosphonium azide ${ }^{43}$ ($615 \mathrm{mg}, 1.3$ mmol), and anhydrous toluene (40 mL) were stirred at $90^{\circ} \mathrm{C}$ for

3 days. Progress of the reaction was monitored by $\operatorname{IR}\left(\mathrm{Q}^{+} \mathrm{N}_{3}{ }^{-} 2000\right.$ $\mathrm{cm}^{-1}, \mathrm{RN}_{3} 2100 \mathrm{~cm}^{-1}$). The mixture was concentrated $\left(80^{\circ} \mathrm{C}, 300\right.$ mmHg) and distilled bulb-to-bulb (0.01 mmHg). The toluene solution of the azide thus obtained was hydrogenated (PtO_{2}, room temperature, atmospheric pressure). After filtration, anhydrous hydrogen chloride was passed into the solution. Evaporation to dryness gave a colorless solid $(0.14 \mathrm{~g}, 87 \%)$. A small sample of the crude hydrochloride was converted to the amine $\left(\mathrm{NaOH} / \mathrm{Et}_{2} \mathrm{O}\right)$ and analyzed by GC: $21(4.8 \%), 24(95.2 \%)$. The major portion was recrystallized from ethyl acetate/methanol to give $24 \cdot \mathrm{HCl}$: $\mathrm{mp} 192-194{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 1.1-2.0(\mathrm{~m}, 6 \mathrm{H}), 2.15-2.65(\mathrm{~m}$, 4 H), 3.10 (br s, 1 H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{ClN}: \mathrm{C}, 60.16 ; \mathrm{H}$, $8.84 ; \mathrm{N}, 8.78$. Found: C, $60.13 ; \mathrm{H}, 8.77$; $\mathrm{N}, 8.76$.

Tricyclo[3.3.0.0 ${ }^{2,6}$]octan-3-one tosylhydrazone (27) was obtained from the analogous ketone, ${ }^{19}$ as described for 16: yield, $58 \% ; \mathrm{mp} 186-188^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.75-2.7(\mathrm{~m}, 8 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $7.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.04 ; \mathrm{H}, 6.25 ; \mathrm{N}, 9.65$. Found: C, 61.89; H, 6.30; N, 9.56 .

Bicyclo[3.3.0]oct-6-en-2-one tosylhydrazone (30) was prepared analogously from the appropriate ketone: ${ }^{20}$ yield, 69%; mp $122-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.55-3.8(\mathrm{~m}, 8 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 5.35-5.75$ ($\mathrm{m}, 2 \mathrm{H}$), $7.30(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 62.04; H, 6.25; N, 9.65. Found: C, 62.25 ; H, 6.30 ; N, 9.82 .

Solvolyses of the Brosylates. Product Studies. The brosylates 22 and 23 ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$), 2,6-lutidine ($65 \mathrm{mg}, 0.6$ mmol), and dioxane/ water ($70: 30,1 \mathrm{~mL}$) were heated at $80^{\circ} \mathrm{C}$ for 20 h . The mixture was diluted with brine and extracted with ether. The extracts were washed with dilute hydrochloric acid and with saturated NaHCO_{3} solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to $1-2 \mathrm{~mL}$ by distillation (Vigreux column). The figures in Table I are averages values from GC analyses on three different capillary columns (30 m , heptaglycol isononyl phenyl ether, 100 ${ }^{\circ} \mathrm{C}$; 39 m , Carbowax $2000,100^{\circ} \mathrm{C}$; 75 m , neopentyl glycol sebacate, $130^{\circ} \mathrm{C}$). The products were identified by comparison with authentic samples, in the order of elution: 29, ${ }^{19} 35,{ }^{20} 39$ (see below), $19,20,40,{ }^{21} 32,{ }^{20} 33 .{ }^{20}$

Kinetic Studies. Rate constants were obtained by using dilute solutions ($<10^{-3} \mathrm{M}$) as described previousiy, ${ }^{27}$ with extensive use of ultrasonics to dissolve the substrates before kinetic data were obtained (Tables III and IV).
Dediazoniation Reactions. The tosylhydrazones 16, 27, and 30 ($30 \mathrm{mg}, 1 \mathrm{mmol}$) were photolyzed (medium-pressure mercury arc, 150 W , Pyrex vessel) in 5 mL of 0.2 M NaOH for 30 min . The solution was saturated with sodium chloride, extracted with ether, and analyzed as above (Table I). For the redistribution of a $6{ }^{-2} \mathrm{H}$ label (Table II), the tosylhydrazone $16(0.36 \mathrm{~g}, 1.2 \mathrm{mmol})$ was irradiated for 3 h in 20 mL of $0.2 \mathrm{M} \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}$. The product mixture, isolated as above, was separated by HPLC (pentane/ ether, $70: 30$) to give pure ($>98 \%$) 19 and 20 , as well as a mixture of 29,32 , and 35 . PGC (2.5 m , Carbowax, $150^{\circ} \mathrm{C}$) served to isolate 29 and $32 .{ }^{2} \mathrm{H}$ NMR revealed the distribution of deuterium in 19 ($\delta 2.30,48 \% ; 3.60,52 \%$), 20 ($\delta 2.21,48 \% ; 4.00,52 \%$), and 29 ($\delta 1.84,75 \%$; $4.38,25 \%$). Overlap of the signals of $6-\mathrm{H}$ and $7-\mathrm{H}$ precluded analogous analysis of 32 . The ${ }^{13} \mathrm{C}$ NMR spectrum of 32 (CDCl_{3} : $\delta 28.5, \mathrm{C}-4 ; 32.9, \mathrm{C}-3 ; 37.9, \mathrm{C}-8 ; 49.0, \mathrm{C}-5 ; 49.5, \mathrm{C}-1$; 80.9, C-2; 128.4, C-7; 134.1, C-6) has been assigned. ${ }^{44}$ The following isotopic shifts and intensities were observed with our sample of ${ }^{2} \mathrm{H}-32$: $\delta 37.863\left(20 \%,\left[7{ }^{2} \mathrm{H}\right]-32\right), 37.962(80 \%$, [6$\left.\left.{ }^{2} \mathrm{H}\right]-32\right) ; 49.050\left(80 \%,\left[6-{ }^{2} \mathrm{H}\right]-32\right), 49.156\left(20 \%,\left[7-{ }^{2} \mathrm{H}\right]-32\right)$.
The amine hydrochlorides $21 \cdot \mathrm{HCl}$ and $24 \cdot \mathrm{HCl}(24 \mathrm{mg}, 0.15$ mmol) were dissolved in 10 mL of water and 10 mL of ether. The aqueous phase was adjusted to pH 3.7 (glass electrode) with dilute perchloric acid. Solutions of sodium nitrite ($75 \mathrm{mg}, 1.1 \mathrm{mmol}$ in 2 mL of water) and of perchloric acid (0.1 M) were concurrently added to keep the pH at 3.5-3.8. Stirring was continued for 16 h at room temperature. The ether phase was separated, and the aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined ether solutions were washed with saturated NaHCO_{3} solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and treated with $\mathrm{LiAlH}_{4}(0.1 \mathrm{~g})$. The mixture was heated at reflux for 1 h , hydrolyzed with a few drops of water, filtered, concentrated, and analyzed by GC (Table I).
(43) Landini, D.; Maia, A.; Montanari, F. J. Am. Chem. Soc. 1978, 100, 2796. Landini, D.; Maia, A.; Montanari, F. Nouv. J. Chim. 1979, 3, 575.
(44) Whitesell, J. K.; Matthews, R. S. J. Org. Chem. 1977, 42, 3878.

The preparation of 21, described above, was adapted to give [$\left.6{ }^{-} \mathrm{H} \mathrm{H}\right]-21$ by using $\mathrm{D}_{2} / \mathrm{DOAc}$ in the hydrogenation of 18 . The deamination of $\left[66^{-2} \mathrm{H}\right)-21 \cdot \mathrm{HCl}(0.45 \mathrm{~g}, 2.8$ mmole was achieved with sodium nitrite ($1.0 \mathrm{~g}, 14.7 \mathrm{mmol}$) and perchloric acid in a biphasic system of water (30 mL) and ether (15 mL). Workup as above, followed by HPLC and GC (cf. photolysis of 16), afforded the major products. ${ }^{2} \mathrm{H}$ NMR: $19 \delta 2.36(47 \%), 3.68(53 \%) ; 20$ $\delta 2.26(49 \%), 4.03(51 \%) ; 29 \delta 1.85(50 \%), 4.39(50 \%) .{ }^{13} \mathrm{C}$ NMR of 29: $\delta 37.797(50 \%), 37.894(50 \%) ; 48.948(50 \%), 49.048(50 \%)$.
Tetracyclo[3.3.0.0 ${ }^{2,8} .0^{3,6}$] octane (36). The tosylhydrazone 16 $(0.80 \mathrm{mg}, 2.7 \mathrm{mmol})$ and sodium hydride ($0.11 \mathrm{~g}, 2.75 \mathrm{mmol}, 60 \%$ suspension in paraffin) were stirred in anhydrous THF (20 mL) for 3 h . Pentane (30 mL) was added, and stirring was continued for 2 h . The sodium salt of $16(0.80 \mathrm{~g}, 95 \%)$ was filtered by suction, washed with pentane, and dried in vacuo. The sodium salt was introduced slowly under vacuum (0.005 mmHg) into a flask which was preheated to $230-250^{\circ} \mathrm{C}$. Volatiles were collected in a receiver cooled with liquid nitrogen. According to GC, the product was 99% pure, and the yield was 88%. The spectra were in agreement with literature data for 36 , obtained from a different source. ${ }^{22}$

For acidolysis, samples ($20-25 \mathrm{mg}$) of 36 were stirred in a sealed vessel with dioxane $/ \mathrm{H}_{2} \mathrm{SO}_{4}(70: 30)$. The product ratios $39: 40$ were fairly independent of acidity and conversion: $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 25$
${ }^{\circ} \mathrm{C}, 3$ days, 8% conversion, $20: 80 ; 0.5 \mathrm{~N}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}, 2$ days, 93% conversion, $17: 83 ; 1.0 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 25^{\circ} \mathrm{C}$, 3 days, 10% conversion, 19:81; $1.0 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}, 2$ days, 100% conversion, $17: 83$. In a preparative run, $36(0.23 \mathrm{~g}, 2.6 \mathrm{mmol})$ was treated with dioxane $/ 1.0 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(7: 3,7 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for 3 days. The mixture was diluted with ether and washed with water and saturated $\mathrm{NaHCO}{ }_{3}$ solution. The ether solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by distillation (Vigreux column). The products 39 (17%) and $40(83 \%)$ were separated by HPLC (pentane/ether, 70:30). ${ }^{1} \mathrm{H}$ NMR of 39: $\delta 0.89$ (dt, endo $6-\mathrm{H}, J_{6 \mathrm{n}, 6 \mathrm{x}}=11.0 \mathrm{~Hz}$, $J_{1,6 \mathrm{n}} \simeq J_{6 \mathrm{n}, 7}=1.5 \mathrm{~Hz}$), 1.12 (d, endo $8-\mathrm{H}, J_{8 \mathrm{n}, 8 \mathrm{x}}=7.2 \mathrm{~Hz}$), 1.22 (dm , exo $3-\mathrm{H}, J_{3 \mathrm{n}, 3 \mathrm{x}}=14.0 \mathrm{~Hz}$), 1.45 (br dd, exo $6-\mathrm{H}, J_{6 \mathrm{n}, 6 \mathrm{x}}=11.0$ $\mathrm{Hz}, J_{5,6 \mathrm{x}}=7.5 \mathrm{~Hz}$), 1.71 (dd, endo $3-\mathrm{H}, J_{3 \mathrm{n}, 3 \mathrm{x}}=14.0 \mathrm{~Hz}, J_{3 \mathrm{n}, 4}=$ $5.8 \mathrm{~Hz}), 1.73(\mathrm{~m}$, exo $8-\mathrm{H}), 2.23(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{br}$ d, $4-\mathrm{H}, J_{3 \mathrm{n}, 4}=5.8 \mathrm{~Hz}$). Comparison of this spectrum with those of 19 and 20 strongly suggests that 39 is tricyclo[3.3.0.0 $0^{2,7}$]oc-tan-exo-4-ol. ${ }^{1} \mathrm{H}$ NMR of 40: $\delta 1.16$ (d, endo $4-\mathrm{H}, J_{4 \mathrm{n}, 4 \mathrm{x}}=9.0 \mathrm{~Hz}$), 1.27 (dm, anti $7-\mathrm{H}, J_{7 \mathrm{a}, 7 \mathrm{~s}}=11.0 \mathrm{~Hz}$), 1.36 (dm, endo $8-\mathrm{H}, J_{8 \mathrm{n}, 8 \mathrm{x}}$ $=12.5 \mathrm{~Hz}), 1.57(\mathrm{~m}, \mathrm{exO} 8 \cdot \mathrm{H}+\mathrm{OH}), 1.79\left(\mathrm{dm}, \operatorname{syn} 7 \cdot \mathrm{H}, J_{7 \mathrm{a}, 7 \mathrm{~s}}=\right.$ $11.0 \mathrm{~Hz}), 2.08(\mathrm{~m}, 3-\mathrm{H}), 2.16(\mathrm{~m}$, exo $4-\mathrm{H}+5-\mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1-\mathrm{H})$, $2.78(\mathrm{~m}, 6-\mathrm{H}), 3.84(\mathrm{~s}, 2-\mathrm{H})$. These data ($400 \mathrm{MHz}+\mathrm{COSY}$) are in agreement with the reported $60-\mathrm{MHz}$ spectrum ${ }^{21}$ and confirmed the assignment of 40 as tricyclo[3.2.1. $0^{3,6}$]octan-exo-2-ol.

Coupling Reactions of 4-tert-Butyl-o-benzoquinone with Olefinic Compounds

Masayuki Takada, Ryuichi Oshima, Yoshio Yamauchi, ${ }^{\dagger}$ Ju Kumanotani, ${ }^{\ddagger}$ and Manabu Seno*
Institute of Industrial Science, University of Tokyo, 7-22-1, Roppongi, Minato-ku, Tokyo 106, Japan

Received September 24, 1987
Room-temperature bulk reactions of 4-tert-butyl-o-benzoquinone (5) and four alkenes, 1,4-pentadiene (6), methyl sorbate (7), methyl linoleate (8), and $3-\left[8^{\prime}(Z), 11^{\prime}(E), 13^{\prime}(Z)\right.$-pentadecatrienyl]veratrole (9) have been studied. Reactions with methylene-interrupted olefins 6,8 , and 9 afforded $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ linked $1: 1$ adducts through dehydrogenation paths, whereas the cycloaddition product 13 was exclusively produced by the reaction with 7 . Comparing the product distribution of these reactions and the orientations predicted by the reactivities of possible reaction species, the hydride ion transfer mechanism has been inferred to dominate in the reaction of 5 and triene 9. On the other hand, the radical path involving the transfer of a hydrogen atom has been favored for reactions of 6 and 8 .

Quinones and olefins are ubiquitously distributed in biological systems, and reactions between these two classes of substances play significant roles in various stages of biological functions. In the previous paper, ${ }^{1}$ we disclosed that physiological oxidation of urushiol in sap of the lac tree, Rhus vernicifera, yielded a series of nucleus side chain bound dimers of urushiol, 1 and 2. It was postulated that

[^12]
these dimers were derived through dehydrogenation of the trienyl side chain of the main urushiol congener 3 with urushiol quinone 4 which was produced by laccase-mediated oxidation of urushiol.
Several studies were concerned with dehydrogenationaddition reactions of high-potential quinones with alkenes as hydrogen donors. ${ }^{2}$ Diethers were derived from reactions of aryl-substituted olefins with DDQ or o-chloranil, and the hydride ion transfer mechanism accounted for features of these reactions. ${ }^{2 b}$ While some simple olefins undergo dehydrogenation-addition with o-chloranil in addition to
(1) Oshima, R.; Yamauchi, Y.; Watanabe, C.; Kumanotani, J. J. Org. Chem. 1985, 50, 2613-2621.

[^0]: （1）For recent reviews，see：（a）Vogel，P．Carbocation Chemistry； Elsevier：Amsterdam，1985．（b）Olah，G．；Prakash，G．K．S．；Sommer， J．In Superacids；Wiley：New York，1985；Chapter 3．5．（c）Shubin，V． G．Top．Curr．Chem．1984，116，267．（d）Saunders，M．；Chandrasekhar， J．；Schleyer，P．v．R．In Rearrangements in Ground and Excited States； de Mayo，P．，Ed．；Academic：New York，1980；Vol．1，p 1．（e）Kirmse， W．Top．Curr．Chem．1979，80，125．（f）Brown，H．C．The Nonclassical Ion Problem（with comments by Schleyer，P．v．R．）；Plenum：New York 1977.
 （2）（a）Olah，G．A．J．Am．Chem．Soc．1972，94，808．（b）Olah，G．A． Angew．Chem．1973，85，183；Angew．Chem．，Int．Ed．Engl．1973，12， 173. （c）Olah，G．A．Top．Curr．Chem．1979，80，211．（d）Olah，G．A．Chem． Scr．1981，18， 97.
 （3）（a）Rates：Grob，C．A．Acc．Chem．Res．1983，16，426．（b）Isotopic perturbation：Saunders，M．；Kates，M．R．J．Am．Chem．Soc．1980，102， 6867；1983，105，3571．（c）X－ray：Laube，T．Angew．Chem．1987，99，580； Angew．Chem．，Int．Ed．Engl．1987，26，561．Montgomery，L．K．；Grendze， M．P．；Huffman，J．C．J．Am．Chem．Soc．1987，109， 4749.

[^1]: （4）Sargent，G．D．In Carbonium Ions；Olah，G．A．，Schleyer，P．v．R．， Eds．；Wiley：New York，1972；Vol．III，p 1099.
 （5）Kirmse，W．；Mrotzeck，U．；Siegfried，R．Angew．Chem．1985，97，51； Angew．Chem．，Int．Ed．Engl．1985，24， 55.
 （6）Kirmse，W．；Zellmer，V．；Goer，B．J．Am．Chem．Soc．1986，108， 4912.
 （7）Schleyer，P．v．R．；Laidig，K．；Wiberg，K．B．；Saunders，M．；Schin－ dler，M．J．Am．Chem．Soc．1988，110， 300.
 （8）（a）Arnett，E．M．；Petro，C．J．Am．Chem．Soc．1978，100，2563， 5408．（b）Arnett，E．M．；Pienta，N．；Petro，C．J．Am．Chem．Soc．1980， 102， 398.
 （9）（a）Lossing，F．P．；Holmes，J．L．J．Am．Chem．Soc．1984，106， 6917. （b）Blanchette，M．C．；Holmes，J．L．；Lossing，F．P．J．Am．Chem．Soc．

[^2]: (10) For a criticism of nonclassical stabilization, see: Brown, H. C. Acc. Chem. Res. 1983, 16, 432.
 (11) Engler, E. M.; Andose, J. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973, 95, 8005.
 (12) Berson, J. A.; Donald, D. S.; Libbey, W. J. J. Am. Chem. Soc. 1969, 91, 5580 .
 (13) (a) Bly, R. K.; Bly, R. S. J. Org. Chem. 1966, 31, 1577. (b) Berson, J. A.; Gajewski, J. J.; Donald, D. S. J. Am. Chem. Soc. 1969, 91, 5550. (14) Nakazaki, M.; Naemura, K.; Kadowaki, H. J. Org. Chem. 1976, 41, 3725.
 (15) (a) Cantrell, T. S.; Solomon, J. S. J. Am. Chem. Soc. 1970, 92, 4656. (b) Noyori, B.; Inoue, H.; Kato, M. J. Chem. Soc. D 1970, 1695.

[^3]: (16) (a) Banert, K.; Kirmse, W. J. Am. Chem. Soc. 1982, 104, 3766. (b) Banert, K. Chem. Ber. 1985, 118, 1564. (c) Kirmse, W.; Streu, J. J. Org. Chem. 1985, 50, 4187.

[^4]: ${ }^{a}$ Alcohols normalized to 100%. The fraction of bicyclo[3.3.0]octadienes was $<5 \%$ from tricyclo[3.3.0.0 $0^{2,7}$]oct-6-yl precursors, 23% from 27 , and 59% from $30 .{ }^{b} 1.4 \%$ of bicyclo[3.3.0]oct-6-en-endo-2-ol. ${ }^{c} 11.4 \%$ of bicyclo[3.3.0]oct-6-en-endo-2-ol.

[^5]: (17) Dauben, W. G.; Willey, F. G. J. Am. Chem. Soc. 1962, 84, 1497.
 (18) For a review, see: Ando, W. In The Chemistry of Diazonium and Diazo Groups; Patai, S., Ed.; Wiley-Interscience: Chichester, 1978; Part I, p 362.

[^6]: (19) Meinwald, J.; Kaplan, B. E. J. Am. Chem. Soc. 1967, 89, 2611.
 (20) Nee, M.; Roberts, J. D. J. Org. Chem. 1981, 46, 67.

[^7]: (21) Sauers, R. R.; Parent, R. A. J. Org. Chem. 1963, 28, 605. Sauers, R. R.; Parent, R. A.; Damle, S. B. J. Am. Chem. Soc. 1966, 88, 2257. (22) Freeman, P. K.; Ziebarth, T. D.; Mallikarjuna Rao, V. N. J. Org. Chem. 1973, 38, 3823.
 (23) For examples of protonated cyclopropanes = alkyl bridged carbocations, formed from tricycloalkanes, see: Kirmse, W.; Streu, J. J. Org. Chem. 1987, 52, 515.

[^8]: (24) Renaud, R. N.; Stephens, J. C. J. Labelled Compd. 1972, 8, 509.

[^9]: (25) Murr, B. L.; Conkling, J. A. J. Am. Chem. Soc. 1970, 92, 3462. (26) Harris, J. M.; Mount, D. L.; Raber, D. J. J. Am. Chem. Soc. 1978, 100, 3139.
 (27) Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 5466.
 (28) Shiner, V. J., Jr.; Fisher, R. D.; Dowd, W. J. Am. Chem. Soc. 1969, 91, 7748 .
 (29) Shiner, V. J., Jr.; Neumann, T. E.; Fisher, R. D. J. Am. Chem. Soc. 1982, 104, 354.
 (30) Kevill, D. M.; Kolwyck, K. C.; Shold, D. M.; Kim, C.-B. J. Am. Chem. Soc. 1973, 95, 6022.
 (31) Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667.
 (32) Bentley, T. W.; Liggero, S. H.; Imhoff, M. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1974, 96, 1970.

[^10]: (33) Bremer, M.; Schleyer, P. v. R., personal communication.
 (34) MM2 force field, modified to account for the interaction of threeand four-membered rings: Roth, W. R., unpublished results.

[^11]: (41) Moffett, R. B. Organic Syntheses; Wiley: New York, 1963; Collect. Vol. IV, p 238.
 (42) Curtis, R. G.; Heilbron, I.; Jones, E. R. H.; Woods, G. F. J. Chem. Soc. 1953, 457.

[^12]: ${ }^{\dagger}$ Current address: Japan Spectroscopic Industries Co. Ltd., Ishikawacyo, Hachioji, Tokyo 192, Japan.
 \ddagger Current address: Ehime University, 3 Bunkyocho, Matsuyama, Ehime 790, Japan.

